TypeScript Documentation Generation - Fork & Pull Request

Recently I have been developing my TypeScript UI project, which is hosted on CodePlex. CodePlex comes with a reasonable Documentation Wiki tab and so I have been trying to build documentation for all my classes, interfaces etc. both inline (i.e. in the code) and on the project site. However, manually converting JSDoc to Wiki Docs is slow, laborious and very hard to keep up-to-date. To add to this, my sister has agreed to translate much of the online documentation into German. This presents me with the issue of how to automate documentation generation so I can get on with coding, and how to guide her on what does and doesn’t need translating.

My solution to this problem is to modify the existing TypeScript compiler to add a --documentation option which will output documentation files for all the classes, interfaces and enumerables in a standard format (.ts.wiki files). I can then write a short C# program to parse these files and show my sister what needs translating.

This seems like it ought to be relatively simple, but this turns out to be horribly messy and tricky. This is mainly due to two big issues with the TS Compiler:

I have been tackling these issues and have been making reasonable progress, so in this article I will begin to explain where I’ve got to and where it is heading.

Where I began

I began by looking at the TypeScript compiler and considering which of its existing outputs would be closest to what I wanted. The compiler in its original form has two main outputs:

The JS files are the compiled code and not exactly useful as documentation, especially since it generally doesn’t contain the comments and isn’t the TypeScript code. I deduced then that whatever code produced the JS probably wasn’t going to help me in producing TS based documentation with JSDoc descriptions included (which are, of course, comments). Declarations files, however, contain TypeScript output, with or without comments, in a standard format and not including any of the actual code. So essentially, documentation but layout out in a different way.

To proceed I knew I would need to add a new option to the compiler and a new file format. By looking at the file names and a few bits of the code I worked out that “emitters” are the things which use “walkers” to go down the symbol tree and emit the relevant output to a file. So I copied and pasted a version of the declarationEmitter.ts file and refactored till it was a “documentationEmitter”. Finally, by trawling the code I was able to duplicate the declarationEmitter lines of code and change them to documentationEmitter code thus adding –documentation as a compiler option and .ts.wiki as an output format.

Hacking the declarationEmitter

The next stage (and my current stage) is hacking the declarationEmitter code till it becomes a documentationEmitter. A challenge with this is that I’m not outputting actual code nor am I trying to output it to a single file nor in the order that the coee is in the script file (for instance I want to order function names alphabetically and separate functions, properties etc. into groups). This presents the post-processing issue. TS is designed to output as it parses which works fine for a compiler like this, but not for documentation. Documentation needs to be written to file out-of-order (with respect to the code) and in the full light of all relevant code around it. I have therefore, come up with a workaround to the lack of an obvious (if any) post-processor.

The declarationEmitter class contains a “close” method which is supposed to close the current emitters file output stream. I am going to use the documentationEmitter’s “close” method as my post-processor kick to emit the documentation (and emit to multiple files). The rest of the emitter code will build a documentation-block tree as an intermediate step between symbol-tree and documentation output. This means changing all the “emit” and callback methods so that instead of immediately writing to the output file, they are context aware and emit to the current documentation block (or create a new where block appropriate).

A documentation block will consist of the text for that block, what type of block it is (e.g. class block, module block, function description block, etc.), the block signature (e.g. public, private, public static, private static), a reference to the block’s parent documentation block and an array of the child documentation blocks. This will allow me to construct a tree of documentation where the text is ready it just needs piecing together in a different order (e.g. class title then what module (namespace)  it belongs to).

This re-coding should be simple, and conceptually it is, but in reality this is a laborious and tricky process. Some of the names of the emitter methods are obscure like “emitTypeNamesMember” (which so far as I can tell, emits the type information for a function, property, variable or something else e.g. number or { x: number; y:number }). It is not exactly clear for someone who doesn’t know what it does or what the exact contents of the symbols are. So at each stage I am left with the following steps:

Not the nicest way to develop since it gives me no real solid idea of how far I have gotten, how much work is left and leaves a lot of guessing (not least I have to mangle 1259 lines of code before it even compiles!)

Advice for others

If you want to do this sort of thing, good luck. It is difficult to get your head around and definitely time-consuming (unless you happen to know your way around a compiler so well that nothing is new to you!) Here’s some information that may help you:

I hope this article helps someone with their attempts at hacking the TS compiler and I will hopefully be submitting my code to the TS CodePlex project at some stage in the future (if not, I’ll at least post the code online for others to use so check back here for updates or follow me on Twitter!).